A New Disulfated Triterpene Glycoside from the Sea Cucumber Mensamaria intercedens Lampert

Zheng Rong ZOU¹, Yang Hua YI¹*, Qiang Zhi XU¹, Hou Ming WU², Hou Wen LIN³

¹Research Center for Marine Drugs, Pharmacy School, Second Military Medical University, Shanghai 200433 ²State Key Laboratory of Life Organic Chemistry, Institute of Organic Chemistry,

³Changzheng Hospital, Second Military Medical University, Shanghai 200433

Abstract: A new disulfated triterpene glycoside named intercedenside B was isolated from the sea cucumber *Mensamaria intercedens* Lampert. The structure was deduced from the spectral data.

Keywords: Mensamaria intercedens Lampert, intercedenside B, disulfated triterpene glycoside.

Mensamaria Intercedens Lampert, a kind of sea cucumber of Cucumariidae, is widely distributed in Southchina sea, especially in Zhaoan Gulf and Dongshan Gulf, Fujian province¹. In this study, we report the structure elucidation of a new disulfated triterpene glycoside from this sea cucumber.

Compound 1, $C_{55}O_{22}H_{84}S_2O_6Na_2$, a colorless amorphous powder, mp 218-220°C, $[\alpha]_{p}^{20}$ –14.2(c 0.5, pyridine), exhibited a pseudomolecular ion peak at m/z 1325 [M+Na]⁺ in the positive-ion mode ESI-MS and a pseudomolecular ion peak at m/z 1279 [M-Na]⁻ in the negative-ion mode ESI-MS. Fragment ion peaks at m/z 1177 [M-Na-SO₃Na+H]⁻, and 1051 [M-2Na-2SO₃Na+H]⁻ indicated the presence of two sulfate groups in the glycoside. In its IR spectrum, it showed the presence of hydroxyl (3502 cm⁻¹), carbonyl (1746 cm⁻¹), olefinic bond (1650 cm⁻¹) and sulfate groups (1239 cm⁻¹, 1067 cm⁻¹).

An examination of the ¹H and ¹³C NMR spectra of compound **1**, suggested the presence of a triterpenoid aglycon with two olefinic bonds, one ester, and one lactone carbonyl group and an oligosaccharide chain composed of four sugar units. The NMR data of compound **1** (**Table 1**) showed that the aglycon moiety of compound **1** was very similar to 16β -acetoxyholosta-7, 24-diene- 3β -ol and the oligosaccharide chain was different from those reported sea cucumber glycosides obviously².

The presence of four β -monosaccharide units in compound **1** was deduced from the ¹H and ¹³C spectrum, which showed four anomeric carbon resonances and four anomeric protons with coupling constants (J values) 7.2-7.8Hz (**Table 1**). The presence of xylose, quinovose, and 3-O-methyl glucose in a 2:1:1 ratio was comfirmed by acid hydrolysis

^{*}E-mail: yiyanghua@hotmail.com

Zheng Rong ZOU et al.

Compound 1

with 15% H₂SO₄ followed by GC-MS analysis of the corresponding alditol peracetates. The sequence of the sugar residues in compound **1** was determined by careful analysis of HMBC correlations. Since the HMBC spectrum showed cross peaks at 4.665/88.900 (H-1[']/C-3), 4.934/81.659 (H-1^{''}/C-2[']), 4.736/85.053 (H-1^{'''}/C-4^{''}), 5.088/86.421 (H-1^{'''}/C-3^{'''}), the sequence of the sugar residues must be 3-O-methyl-glc(1 \rightarrow 3)-xyl (1 \rightarrow 4)-qui(1 \rightarrow 2)-xyl(1 \rightarrow 3)-aglycon.

The site of linkage of the sulfate groups in the sugar units was determined by comparison of ¹³C-NMR data of compound **1** with those reported glycosides². Esterification shifts were observed at the signals of C-4' (xyl₁, from 68 to 76), C-6'''' (3-O-methyl-glc, from 61 to 67).

Therefore, the structure of compound **1** was deduced as 16 β -acetoxy-3-O-{6 \cdots -O-sodium sulfate-3 \cdot -O-methyl- β -D-glucopyranosyl(1 \rightarrow 3)- β -D-xylopyranosyl(1 \rightarrow 4)- β -D-quinovopyranosyl(1 \rightarrow 2)-4 \cdot -O-sodium sulfate- β -D-xylopyranosyl}-holosta-7, 24-diene-3 β -ol.

A New Disulfated Triterpene Glycoside from the Sea Cucumber 587 Mensamaria intercedens Lampert

Carbon	δ_{C}	$\delta_{\rm H}(m,Jin{\rm Hz})$	(Carbon	$\delta_{\rm C}$	$\delta_{\rm H}($ m, J in Hz $)$
1	35.4	1.267(2H, br)	Xy11	1	103.8	4.67 (1H, d, 7.2)
2	26.3	1.80(1H, m), 1.90(1H, m)		2	81.7	3.95 (1H, 1H, t, 7.8)
3	88.9	3.152 (1H, dd, 3.6, 12)		3	74.1	4.21(1H, t, 9)
4	38.9			4	75.8	4.89 (1H, m)
5	47.7	0.87 (1H, dd, 9.6, 12.8)		5	63.2	3.71(1H, m), 4.71 (1H,,m)
6	23.1	1.86 (2H, m)	Qui	1	104.1	4.93 (1H, d, 7.8)
7	119.9	5.57 (1H, s)		2	74.3	3.90 (1H, m)
8	145.0			3	75.0	3.80 (1H, m)
9	46.7	3.24 (1H, d, 13.8)		4	85.0	3.47(1H, t, 9)
10	34.9			5	71.1	3.62(1H, m)
11	22.0	1.44 (1H, m),1.68(1H, m)		6	17.2	1.57 (3H, s)
12	30.8	2.09 (2H, m)	Xy12	1	103.9	4.74 (1H, d, 7.8)
13	58.7			2	72.8	3.83 (1H, m)
14	47.0			3	86.4	4.02 (1H, m)
15	43.1	1.57(1H, m), 2.55 (1H, dd,		4	68.3	3.88(1H, m)
16	75.2	5.80 (1H, ddd, 7.2, 8.4,		5	65.1	3.58 (1H, m), 4.136 (1H, m)
17	53.9	2.69 (1H, d, 8.4)	3-OMeG	u 1	104.3	5.09 (1H, d, 7.8)
18	180.1			2	73.7	3.75 (1H, m)
19	23.4	1.06(3H, s)		3	85.7	3.64 (1H, m)
20	85.4			4	69.4	3.91 (1H, m)
21	27.7	1.56(3H, s)		5	74.7	4.01(1H, m)
22	38.1	1.78(1H, m), 2.36 (1H, m)		6	66.8	4.62 (1H, dd, 6, 11.4), 4.88(1H, m)
23	22.7	1.81 (1H, m), 1.98(1H, m)		OCH ₃	60.8	3.84(3H, s)
24	123.3	4.95(1H, d, 7.8)				
25	132.0					
26	25.0	1.57 (3H, s)				
27	17.4	1.59 (3H, s)				
30	16.8	0.96 (3H, s)				
31	28.2	1.13 (3H, s)				
32	31.8	1.14 (3H, s)				
CH ₃ COO 170.8						
CH ₃ COO	31.8	1.95 (3H, s)				

Table 1 ¹H and ¹³C NMR data for compound **1** (in pyridine- d_5 — D_2O 4:1, 600MHz)

References

- Y. L. Liao, Chinese Fauna Echinodermata Holothuroidea, Science press, Beijing, 1997, 1. p. 174.
 M. S. Maier, A. J. Roccatagliata, A. Kuriss, *J. Nat. Prod.*, **2001**, *64*, 732.
- 2.

Received 7 June, 2002